Structures and Photochemistry of Dibenzobarrelene Monoamides

Ray Jones, A. Graham M. Rattray, Steven J. Rettig, John R. Scheffer and James Trotter*
Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T $1 Z 1$

(Received 27 March 1996; accepted 17 June 1996)

Abstract

The photochemistry of 9,10-ethenoanthracene-11monoamides has been studied and correlated with the crystal structures determined for two derivatives; photoproduct structures have been established from a crystal structure analysis of one of the products and from NMR correlations. Crystal data are: (1)-Et, N, N-diethyl- 9,10 -dihydro- 9,10 -ethenoanthracene-11carboxamide, $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}$, Pbca; (1)-Pr, 9,10-dihydroN, N-di(isopropyl)-9,10-ethenoanthracene-11-carboxamide, $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}, P 2_{1} / c$; (2L)-Bz, 9,10-dihydro-9,10-ethenoanthracene-11-spiro- 3^{\prime}-(1-benzyl-4-phenylazetidine) ${ }^{\prime}$ '-one, $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{NO}$ (+ solvent), $P 2_{1} / a(Z=8)$. The two dibenzobarrelene molecules have geometries and dimensions similar to those of related materials; the amide group in each molecule is only partially conjugated with the $\mathrm{C} 11=\mathrm{C} 12$ double bond. Mechan-

(1) $-R$

(2M)

(2L)
$R=\mathrm{Et}, \mathrm{Pr}^{i}, \mathrm{Bz}$
$R^{\prime}=\mathrm{Me}, \mathrm{Me}, \mathrm{Ph}$
$R^{\prime \prime}=\mathrm{H}, \mathrm{Me}, \mathrm{H}$
isms are derived for the formation of three types of photoproduct: (i) the well known di- π-methane reaction [($2 M$)-type photoproduct]; (ii) a hydrogen abstraction process (2H); (iii) β-lactam formation (2L).

1. Introduction

Studies of the photochemistry of dibenzobarrelene derivatives (Pokkuluri, Scheffer \& Trotter, 1993a,b; Jones, Rettig, Scheffer, Trotter \& Yang, 1996) have been extended to examine the reactions of monoamides. Photolysis of these materials $[(1)-R]$ in solution and in the solid state gives three types of photoproduct [($2 M$), (2 H) and (2 L)]. The crystal structures of two derivatives have been determined: (1)-R, $R=\mathrm{Et}, \mathrm{Pr}^{i}$. The molecular structure of one of the photoproducts ($2 L$)-Bz was determined by crystal structure analysis, and the structures of the other photoproducts from spectroscopic (mainly NMR) data.

2. Experimental

The dibenzobarrelene monoamides were synthesized from a monocarboxylate (Rattray, 1992, see deposition material \dagger). X-ray data, measured on a Rigaku AFC-6S diffractometer, are summarized in Table 1. The structures were solved by direct methods and refined by full-matrix least-squares procedures, with $w=1 / \sigma^{2}(F)$. H-atom parameters were fixed at calculated values. For (1)-Et, one ethyl group is disordered (occupancies $81: 19$; isotropic thermal parameters for the lower occupancy sites). Crystals of (1)-Bz were not suitable for X-ray analysis. For ($2 L$)-Bz a region of electron-density peaks probably corresponds to solvent (the crystals were obtained from chloroform/petroleum ether), but the distribution could not be readily interpreted in terms of disordered solvent molecules. The region probably contains superimposed chloroform and hydrocarbon molecules. The largest peak in this region was modeled as a half-occupancy Cl atom, refined with anisotropic thermal parameters. All other

[^0]
Table 1. Experimental details

Crystal data
Chemical formula
Chemical formula weight
Cell setting
Space group
$a(\AA)$
$b(\AA)$
$c(\AA)$
$c\left({ }^{0}\right)$
$\beta\left(\AA^{\circ}\right)$
$V\left(\mathrm{~A}^{2}\right)$
$D_{x}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$
Radiation type
Wavelength (\AA)
No. of reflections for cell parameters
θ range (${ }^{\circ}$)
$\mu\left(\mathrm{mm}^{-1}\right)$
Temperature (K)
Crystal form
Crystal size (mm)
Crystal color

Data collection
Diffractometer
Data collection method
Absorption correction
$\quad T_{\text {min }}$
$T_{\text {max }}$
No. of measured reflections
No. of independent reflections
No. of observed reflections
Criterion for observed reflections
$R_{\text {int }}$
$\theta_{\text {max }}\left({ }^{\circ}\right)$
Range of h, k, l

No. of standard reflections
Frequency of standard reflections
Intensity decay (\%)
(1) -Et
$\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}$
303.40

Orthorhombic
Pbca
31.863 (2)
11.088 (2)
9.400 (3)

3320 (1)
8
1.214
$\mathrm{Cu} K \alpha$
1.5418

25
24.6-39.4
0.574

294
Plate
$0.15 \times 0.15 \times 0.05$
Colorless

Rigaku AFC-6S
$\omega-2 \theta$ scans
$\omega-2 \theta$ scans
ψ scans (North, Phillips \& Mathews,
1968)
0.984
1.000

3505
3505
1669
$l>3.00 \sigma(I)$
77.43
$0 \rightarrow h \rightarrow 40$
$0 \rightarrow k \rightarrow 14$
$-11 \rightarrow l \rightarrow 0$
3
Every 150 reflections
2.9
$(1)-\mathrm{Pr}$

$\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}$
331.46
Monoclinic
$P 2_{1} / \mathrm{c}$
$10.846(1)$
$10.788(2)$
$17.0463(9)$
$107.836(7)$
$1898.7(4)$
4
1.159
Mo K α
0.7107
2.5
$11.4-18.2$
0.065
294
Prism
$0.42 \times 0.37 \times 0.22$
Colorless

Rigaku AFC-6S
$\omega-2 \theta$ scans
ψ scans (North, Phillips \& Mathews,
1968)
0.942
1.000
$4833 \quad 1.000$
$4358-11174$
$\begin{array}{ll}4358 & 10345 \\ 2360 & 4319\end{array}$
$1>3.00 \sigma(I)$
0.027
27.50
$0 \rightarrow h \rightarrow 14$
$0 \rightarrow k \rightarrow 14$
$-21 \rightarrow l \rightarrow 21$
3
Every 200 reflections 0.3

Refinement

Refinement on	F
R	0.0398
$w R$	0.0331
S	1.946
No. of reflections used in refinement	1669
No. of parameters used	227
H-atom treatment	$\mathrm{C}-\mathrm{H}$ riding
Weighting scheme	$w=1 /\left[\sigma^{2}\left(F_{o}\right)\right]$
$(\Delta / \sigma)_{\max }$	0.009
$\Delta \rho_{\max }\left(\mathrm{e} \AA^{-3}\right)$	0.13
$\Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$	-0.18
Extinction method	Zachariasen (1967)
Extinction coefficient	$0.97(7) \times 10^{-6}$
Source of atomic scattering factors	International Tables for Crystallogra-
	phy $(1992$, Vol. C. Table 6.1.1.2)

Computer programs	
Data collection	MSC/AFC (Molecular Structure
Cell refinement	Corporation, 1988)
	MSC/AFC (Molecular Structure
Data reduction	Corporation, 1988)
	TEXSAN (Molecular Structurc
Structure solution	Corporation, 1995)
Structure refinement	SIR92 (Altomare et al., 1993)
	TEXSAN (Molecular Structure
Preparation of material for publica-	Corporation, 1995)
tion	TEXSAN (Molecular Structure
Corporation, 1995)	

F	F
0.0372	0.0471
0.0336	0.0411
2.227	2.410
2360	4319
227	649
$\mathrm{C}-\mathrm{H}$ riding	$\mathrm{C}-\mathrm{H}$ riding
$w=1 /\left[\sigma^{2}\left(F_{o}\right)\right]$	$w=1 /\left[\sigma^{2}\left(F_{o}\right)\right]$
0.0003	0.0660
0.19	0.31
-0.12	-0.30
Zachariasen (1967)	Zachariasen (1967)
$0.89(4) \times 10^{-6}$	$0.54(5) \times 10^{-6}$
International Tables for Crystallogra-	International Tables for Crystallogra-
phy (1992, Vol. C, Table 6.1.1.2)	phy (1992, Vol. C, Table 6.1.1.2)

MSC/AFC (Molecular Structure
Corporation, 1988)
MSCIAFC (Molecular Structure Corporation, 1988)
TEXSAN (Molecular Siructure
Corporation, 1995)
SIR92 (Allomare et al., 1993)
TEXSAN (Molecular Structurc
Corporation, 1995)
TEXSAN (Molecular Structure
Corporation, 1995)
(2L) -Bz
$\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{NO} .\left(\mathrm{CHCl}_{3}\right)_{0.25} .\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)_{0.25}$
478.43

Monoclinic
$P 2_{1} / a$
10.228 (3)
32.818 (3)
15.529 (3)
99.79 (2)

5137 (1)
8
1.237
$\mathrm{Cu} \mathrm{K} \alpha$
1.5418

24
15.5-24.2
1.265

294
Plate
$0.45 \times 0.20 \times 0.10$
Colorless

Rigaku AFC-6S
$\omega-2 \theta$ scans
ψ scans (North, Phillips \& Mathews.
1968)
0.754

11174
$l>3$.
0.0265
77.69
$0 \rightarrow h \rightarrow 12$
$0 \rightarrow k \rightarrow 41$
$-19 \rightarrow I \rightarrow 19$
3
Every 250 reflections
8.6
F
0.0411
2.410

4319
$\mathrm{C}-\mathrm{H}$ riding
$w=1 /\left[\sigma^{2}\left(F_{0}\right)\right]$
0.31
-0.30
$0.54(5) \times 10^{-6}$
International Tables for Cristallography (1992, Vol. C, Table 6.1.1.2)

MSCIAFC (Molecular Structure Corporation, 1988)
MSCIAFC (Molecular Structure Corporation, 1988)
TEXSAN (Molecular Structure
Corporation, 1993)
SIR92 (Altomare et al., 1993)
TEXSAN (Molecular Structure
Corporation, 1993)
TEXSAN (Molecular Structure
Corporation, 1993)

Table 2. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
(1)-Et ${ }^{\text {eq }}$				
O (1)	0.28809 (5)	0.4193 (2)	0.4627 (2)	0.0821 (7)
$\mathrm{N}(1)$	0.29502 (6)	0.2186 (2)	0.4916 (3)	0.0668 (8)
C(1)	0.43226 (8)	0.4751 (2)	0.6676 (3)	0.0503 (8)
C(2)	0.47247 (8)	0.4423 (2)	0.7108 (3)	0.0569 (9)
C(3)	0.49739 (8)	0.3711 (3)	0.6252 (3)	0.0583 (9)
C(4)	0.48269 (7)	0.3313 (2)	0.4943 (3)	0.0542 (8)
C(4a)	0.44287 (7)	0.3643 (2)	0.4505 (3)	0.0431 (7)
C(5)	0.42665 (8)	0.5018 (3)	0.1135 (3)	0.0581 (9)
C(6)	0.4157 (1)	0.6179 (3)	0.0715 (3)	0.071 (1)
C(7)	0.3907 (1)	0.6879 (3)	0.1577 (4)	0.071 (1)
$\mathrm{C}(8)$	0.37591 (8)	0.6445 (2)	0.2872 (3)	0.0575 (9)
$\mathrm{C}(8 \mathrm{a})$	0.38711 (7)	0.5294 (2)	0.3299 (3)	0.0451 (7)
C(9)	0.37565 (7)	0.4667 (2)	0.4688 (3)	0.0430 (7)
C(9a)	0.41774 (7)	0.4360 (2)	0.5377 (3)	0.0419 (7)
$\mathrm{C}(10)$	0.42216 (7)	0.3364 (2)	0.3083 (3)	0.0463 (8)
C(10a)	0.41251 (7)	0.4588 (2)	0.2426 (3)	0.0456 (7)
C(11)	0.35548 (7)	0.3460 (2)	0.4268 (3)	0.0429 (7)
C(12)	0.37982 (7)	0.2801 (2)	0.3429 (3)	0.0473 (8)
C(13)	0.31067 (8)	0.3289 (2)	0.4636 (3)	0.0554 (8)
$\mathrm{C}(14)$	0.2483 (1)	0.2071 (3)	0.5040 (5)	0.061 (1)
$\mathrm{C}\left(14^{\prime}\right)$	0.2602 (5)	0.209 (2)	0.623 (3)	0.075 (7)
$\mathrm{C}\left(15^{\prime}\right)$	0.2183 (5)	0.203 (1)	0.539 (3)	0.107 (8)
C(15)	0.2362 (2)	0.2280 (6)	0.6517 (7)	0.110 (2)
C(16)	0.31953 (8)	0.1093 (2)	0.5133 (4)	0.0694 (10)
C(17)	0.31456 (10)	0.0202 (3)	0.3928 (4)	0.091 (1)
(1)-Pr				
$\mathrm{O}(1)$	0.3259 (1)	0.1516 (1)	0.46957 (8)	0.0542 (4)
$\mathrm{N}(1)$	0.2272 (1)	0.1342 (1)	0.33230 (8)	0.0375 (4)
C(1)	0.6100 (2)	0.4770 (2)	0.4394 (1)	0.0478 (7)
C(2)	0.7248 (2)	0.5202 (2)	0.4944 (1)	0.0585 (8)
$\mathrm{C}(3)$	0.8307 (2)	0.4434 (2)	0.5207 (1)	0.0540 (7)
C(4)	0.8242 (2)	0.3215 (2)	0.4932 (1)	0.0445 (6)
$\mathrm{C}(4 \mathrm{a})$	0.7102 (2)	0.2782 (2)	0.4381 (1)	0.0349 (5)
C (5)	0.7136 (2)	0.1395 (2)	0.2504 (1)	0.0516 (7)
C(6)	0.6718 (2)	0.1810 (2)	0.1693 (1)	0.0633 (8)
C(7)	0.5685 (2)	0.2614 (2)	0.1429 (1)	0.0645 (8)
C(8)	0.5037 (2)	0.3009 (2)	0.1968 (1)	0.0513 (7)
$\mathrm{C}(8 \mathrm{a})$	0.5443 (2)	0.2599 (2)	0.2777 (1)	0.0383 (5)
C(9a)	0.6033 (2)	0.3568 (2)	0.4110 (1)	0.0362 (5)
C(9)	0.4895 (2)	0.2967 (2)	0.3465 (1)	0.0369 (5)
C(10)	0.6850 (2)	0.1516 (2)	0.3969 (1)	0.0367 (5)
C(10a)	0.6502 (2)	0.1798 (2)	0.3048 (1)	0.0381 (5)
C(11)	0.4605 (2)	0.1760 (2)	0.38501 (10)	0.0335 (5)
C(12)	0.5628 (2)	0.1025 (2)	0.4119 (1)	0.0358 (5)
C(13)	0.3321 (2)	0.1518 (2)	0.3987 (1)	0.0359 (5)
C(14)	0.0981 (2)	0.1169 (2)	0.3436 (1)	0.0470 (6)
C(15)	0.2352 (2)	0.1221 (2)	0.2477 (1)	0.0468 (6)
C(16)	0.0558 (2)	0.2311 (2)	0.3806 (2)	0.0791 (9)
C(17)	0.0903 (2)	-0.0002 (3)	0.3906 (2)	0.0802 (9)
C (18)	0.1637 (2)	0.2261 (2)	0.1921 (1)	0.0741 (8)
$\mathrm{C}(19)$	0.1893 (2)	-0.0046 (2)	0.2114 (1)	0.0632 (7)
(2L)- Bz				
$\mathrm{Cl}(1)$	0.4432 (5)	0.3372 (2)	0.2339 (2)	0.210 (2)
$\mathrm{O}(1)$	0.4751 (2)	0.68503 (8)	0.1639 (2)	0.075 (1)
$\mathrm{O}(2)$	-0.0518 (2)	0.47530 (8)	0.2198 (2)	0.0678 (9)
$\mathrm{N}(1)$	0.6971 (3)	0.70515 (9)	0.1732 (2)	0.056 (1)
$\mathrm{N}(2)$	0.1541 (3)	0.50799 (8)	0.2438 (2)	0.0475 (9)
C (1)	0.8230 (3)	0.6168 (1)	-0.0651 (2)	0.045 (1)
C(2)	0.9071 (3)	0.5856 (1)	-0.0805 (2)	$0.052(1)$
C (3)	(0.9060) (3)	0.5493 (1)	-0.0377 (2)	0.053 (1)
C (4)	0.8205 (3)	0.5424 (1)	0.0214 (2)	0.050 (1)
C(4a)	0.73 .54 (3)	0.5732 (1)	0.0366 (2)	0.042 (1)
C (5)	0.3880 (4)	0.5580 (1)	0.0247 (2)	0.058 (1)
C(6)	0.2763 (4)	0.5721 (1)	-0.0305 (3)	0.069 (2)
C(7)	0.2771 (3)	0.6096 (1)	-0.0701 (3)	0.067 (1)
$\mathrm{C}(8)$	0.3901 (4)	0.6337 (1)	-0.0558 (2)	0.055 (1)
$\mathrm{C}(8 \mathrm{a})$	0.5016 (3)	0.6197 (1)	-0.0016 (2)	0.044 (1)
$\mathrm{C}(9)$	0.6354 (3)	0.64071 (9)	(0.0170 (2)	0.041 (1)
$\mathrm{C}(9 \mathrm{a})$	0.73557 (3)	0.61051 (10)	-0.00072 (2)	$0.039(1)$
C (10)	0.6 .318 (3)	$0.57108(10)$	0.0947 (2)	0.046 (1)

Table 2 (cont.)

	x	y	z	$U_{\text {eq }}$
C(10a)	0.5007 (3)	0.5818 (1)	0.0395 (2)	0.044 (1)
C(11)	0.6689 (3)	0.64714 (10)	0.1173 (2)	0.044 (1)
C(12)	0.6645 (3)	0.6055 (1)	0.1637 (2)	0.053 (1)
C(13)	0.7928 (3)	0.6751 (1)	0.1516 (2)	0.048 (1)
C(15)	0.5894 (4)	0.6810 (1)	0.1533 (2)	0.054 (1)
C(16)	0.8833 (3)	0.6897 (1)	0.0917 (2)	0.046 (1)
C(17)	1.0045 (4)	0.6712 (1)	0.0938 (3)	0.062 (1)
C(18)	1.0887 (4)	0.6829 (2)	0.0383 (4)	0.087 (2)
C(19)	1.0521 (6)	0.7129 (2)	-0.0216 (4)	0.100 (2)
C(20)	0.9330 (6)	0.7327 (1)	-0.0236 (3)	0.097 (2)
C(21)	0.8484 (4)	0.7212 (1)	0.0332 (3)	0.070 (1)
C(22)	0.7216 (4)	0.7410 (1)	0.2287 (3)	0.064 (1)
C(23)	0.7883 (4)	0.7300 (1)	0.3198 (3)	0.057 (1)
C(24)	0.7354 (4)	0.7004 (1)	0.3676 (3)	0.072 (2)
C(25)	0.7973 (6)	0.6903 (1)	0.4504 (4)	0.088 (2)
C(26)	0.9126 (6)	0.7092 (2)	0.4865 (3)	0.100 (2)
C(27)	0.9671 (5)	0.7384 (2)	0.4391 (4)	0.106 (2)
C(28)	0.9044 (5)	0.7487 (1)	0.3561 (3)	0.077 (2)
C(31)	0.4093 (4)	0.3986 (1)	0.4366 (3)	0.067 (1)
C(32)	0.4818 (4)	0.3938 (1)	0.5209 (3)	0.083 (2)
C(33)	0.4260 (5)	0.4026 (1)	0.5924 (3)	0.087 (2)
C(34)	0.2969 (5)	0.4162 (1)	0.5839 (3)	0.074 (2)
C(34a)	0.2233 (4)	0.4206 (1)	0.5018 (3)	0.057 (1)
$\mathrm{C}(35)$	-0.1160 (5)	0.3869 (2)	0.4316 (3)	0.088 (2)
C(36)	-0.1760 (5)	0.3591 (2)	0.3702 (4)	0.114 (2)
C(37)	-0.1194 (6)	0.3492 (2)	0.2993 (4)	0.106 (2)
C(38)	-0.0004 (5)	0.3672 (1)	0.2859 (3)	0.078 (2)
$\mathrm{C}(38 \mathrm{a})$	0.0589 (4)	0.3954 (1)	0.3471 (3)	0.058 (1)
C(39)	0.1847 (4)	0.4190 (1)	0.3423 (2)	0.050 (1)
C(39a)	0.2786 (4)	0.4118 (1)	0.4273 (3)	0.054 (1)
C(40)	0.0816 (4)	0.4354 (1)	0.4794 (2)	0.061 (1)
C(40a)	0.0033 (4)	0.4046 (1)	0.4201 (3)	0.063 (1)
$\mathrm{C}(41)$	0.1462 (3)	0.4648 (1)	0.3415 (2)	0.047 (1)
$\mathrm{C}(42)$	0.0854 (4)	0.4746 (1)	0.4235 (2)	0.063 (1)
C(43)	0.2520 (3)	0.49673 (10)	0.3202 (2)	0.046 (1)
C(45)	0.0603 (4)	0.4811 (1)	0.2580 (2)	0.049 (1)
C(46)	0.3849 (3)	0.48359 (10)	0.3007 (2)	0.046 (1)
C(47)	0.4985 (4)	0.4909 (1)	0.3600 (3)	0.069 (1)
C(48)	0.6206 (4)	0.4784 (1)	0.3422 (3)	0.090 (2)
C(49)	0.6309 (4)	0.4592 (1)	0.2660 (3)	0.086 (2)
$\mathrm{C}(50)$	0.5185 (4)	0.4520 (1)	0.2063 (3)	0.074 (2)
C(51)	0.3961 (3)	0.4642 (1)	0.2233 (2)	0.057 (1)
C(52)	0.1494 (3)	0.5431 (1)	0.1870 (2)	0.054 (1)
C(53)	0.1539 (3)	0.5823 (1)	0.2376 (2)	0.048 (1)
C(54)	0.0573 (4)	0.5907 (1)	0.2882 (3)	0.062 (1)
C(55)	0.0599 (5)	0.6266 (1)	0.3336 (3)	0.076 (2)
C(56)	0.1605 (6)	0.6544 (1)	0.3310 (3)	0.085 (2)
C(57)	0.2562 (4)	0.6464 (1)	0.2815 (3)	0.076 (2)
C(58)	0.2528 (4)	0.6107 (1)	0.2341 (3)	0.062 (1)
C(59)	0.282 (2)	0.2641 (6)	0.325 (2)	0.185 (8)
C(60)	0.520 (4)	0.302 (2)	0.264 (3)	0.17 (1)
C(61)	0.555 (1)	0.2654 (4)	0.2835 (7)	0.167 (4)
C(62)	0.336 (2)	0.2930 (5)	0.3525 (10)	0.191 (5)
C(63)	0.439 (3)	0.2669 (9)	0.218 (2)	0.18 (1)
C(65)	0.402 (2)	0.3029 (5)	0.283 (1)	0.187 (6)
C(66)	0.489 (1)	0.2886 (3)	0.3646 (7)	0.188 (4)
C (67)	0.240 (1)	0.2731 (5)	0. 258 (1)	0.184 (6)
C(68)	0.303 (2)	0.2787 (4)	0.2032 (9)	0.192 (5)
C (69)	0.272 (2)	0.3075 (7)	0.292 (2)	0.187 (8)
C(70)	0.438 (3)	0.2557 (9)	0.289 (2)	0.19 (1)

solvent region peaks were refined as C atoms with isotropic thermal parameters. Occupancy factors were adjusted as the refinement progressed to yield approximately equal thermal parameters.

Scattering factors were from the International Tables for Crystallography (1992), computer programs as supplied in TEXSAN (Molecular Structure Corporation, 1995). Details of the refinements are given in Table 1.

Table 3. Selected bond lengths ((\mathfrak{A}) and angles (${ }^{\circ}$)

	$(1)-\mathrm{Et}$	$(1)-\mathrm{Pr}$	$(2 L)-\mathrm{Bz}$
$\mathrm{C} 11=\mathrm{C} 12$	$1.326(3)$	$1.326(2)$	$[1.549,1.544(4)]$
$\mathrm{C}=\mathrm{O}$	$1.233(3)$	$1.230(2)$	$1.215,1.214(4)$
$\mathrm{OC}-\mathrm{N}$	$1.348(3)$	$1.350(2)$	$1.349,1.349(4)$
$\mathrm{C}-\mathrm{C}-\mathrm{C}$ (ring	$126.8-$	$126.7-$	$125.6-126.9(4)$
junction,	$127.4(2)$	$127.7(2)$	
\quad external)			
Angles in 4-ring:		-	$96.0,96.3(3)$
\quad at N	-	-	$84.3-92.6(3)$

3. Discussion

Final positional parameters are given in Table 2, selected molecular parameters in Table 3 and other data have been deposited.*

The two dibenzobarrelene molecules have geometries and dimensions (Fig. 1 and Table 3) similar to those of related materials (Pokkuluri et al., 1993a,b; Jones et al., 1996). The external angles at the ring junctions are increased to $\sim 127^{\circ}$ (Table 3) as a result of ring junction strain. The amide groups are only partially conjugated with the $\mathrm{C} 11=\mathrm{C} 12$ double bond, the $\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{O}$ torsion angles being $-136.0(3)$ and $63.8(3)^{\circ}$ for the (1)-Et and (1)-Pr compounds, respectively $\left[\cos ^{2}(\right.$ angle $)=$ 0.52 and 0.19].

The molecular structures of the di- π-methane photoproducts ($2 M$) were established from NMR data and comparison with related materials (Ciganek, 1966; Jones et al., 1996). Briefly, the observation of two singlets in the ratio $2: 1$ in the region $\delta 3.5-4.8$ p.p.m. establishes the symmetrical location of the amide group at the ($8 c$) position (semibullvalene numbering system). The structures of the photoproducts of the type $(2 \mathrm{H})$ were determined from spectroscopic data (Rattray, 1992). The parent ion peaks in the mass spectra correspond to a loss of $R-3 \mathrm{H}$ mass units from the starting materials. In addition, the most intense peaks in the spectra at $m / z 178$ can be attributed to anthracene, typical of dibenzobarrelene, rather than semibullvalene ring systems. The strong IR absorptions at 3248, 1639 and $1535 \mathrm{~cm}^{-1}$ (for $R=\mathrm{Et}$) indicate the presence of a secondary amide attached to a saturated carbon atom. Finally, the NMR spectra can be fully assigned on the basis of structure (2 H) (Rattray, 1992).

The structure of the ($2 L$)-type photoproduct, which is found mainly in the photolysis of the benzyl derivative, was established by X-ray analysis of photoproduct (2L)Bz (Fig. 1). The spectroscopic data are fully consistent with this structure (Rattray, 1992). The molecule contains a dibenzobarrelene ring skeleton, with a spiro-fused β-lactam almost planar four-membered ring [mean torsion angles $5.7(2)$ and $0.5(2)^{\circ}$ in the two independent molecules].

[^1]

(c)

Fig. 1. Views of the molecules of $(a)(1)-\mathrm{Et},(b)(1)-\mathrm{Pr}$ and (c) $(2 L)-\mathrm{Bz}$ (one of the two molecules in the asymmetric unit; the other is similar); 33% thermal probability ellipsoids.

Table 4. Ratios of photoproducts (\%)

	$(2 M)$	Product ratios $(2 H)$	
$R=\mathrm{H}$ or Me		$(2 L)$	
\quad Solution or solid state	100	0	0
$R=\mathrm{Et}$			
Benzene	66	33	0
Acetone, acetonitrile	75	25	0
Solid state	100	0	0
$R=\mathrm{Pr}^{i}$			
Benzene	30	60	10
Acetone	60	25	15
Acetonitrile	30	60	10
Solid state	100	0	0
$R=\mathrm{CH}_{2} \mathrm{Ph}(\mathrm{Bz})$			
Benzene	35	5	60
Acetone	40	5	55
Acetonitrile	50	Trace	50
Solid state	85	0	15

3.1. Photochemistry

The monoamides (1)-R undergo the di- π-methane reaction in solution and in the solid state to produce the usual semibullvalene-type photoproducts ($2 M$). These are the major products in the solid-state photolysis, but in solution significant amounts of two other products are found, (2 H) and (2 L) (Table 4).
In the di- π-methane rearrangement of the dibenzobarrelene monoamides only one of two possible regioisomeric products is formed, similar to the situation in the photolysis of a monocarboxylate (Ciganek, 1966). The accepted mechanism for the di-π-methane photochemical reaction in ethenoanthracenes involves initial vinyl-benzo carbon-carbon bond formation (Zimmerman, 1991). Although there are two possible pathways, A and B (Fig. 2), the reaction is likely to proceed by the route which allows maximum π-delocalization in the intermediate biradicals, extending onto the substituent group, i.e path A, producing the observed photoproduct ($2 M-\mathrm{A}$) (Fig. 2).
Photolysis of compounds (1) $-R, R=\mathrm{H}, \mathrm{Me}$, produces only photoproducts of the type $(2 M)$, in solution and in the solid state (Table 4). For $R=\mathrm{Et}, \mathrm{Pr}^{i}, \mathrm{Bz},(2 M)$ is also the only photoproduct in the solid-state photolyses (apart from a small amount of an additional product when $R=\mathrm{Bz}$, see Table 4). In solution photolysis for $R=\mathrm{Et}, \mathrm{Pr}^{\mathrm{i}}, \mathrm{Bz}$, two other types of photoproduct are found, ($2 H$) and ($2 L$) (Table 4).

Formation of photoproducts of the type $(2 \mathrm{H})$ from reactants (1) $-R$ involves reduction of the bridging double bond, with a concomitant loss of one of the amide substituent groups ($\mathrm{Et}, \mathrm{Pr}^{i}$ or Bz). A plausible mechanism for this reaction is via intramolecular hydrogen abstraction by the vinylic C atom beta to the amide group (as shown for $R=\mathrm{Et}$ in Fig. 3), and an example of a type II reaction of an aliphatic olefin. This type of reaction has been observed previously in photocyclization of dialkylamides (Aoyama, Hasegawa, Okazaki \& Omote, 1979), although the N, N-diethylamides in that case did not give rise to N-monosub-
stituted amides. After hydrogen abstraction, cleavage of a $\mathrm{C}-\mathrm{N}$ bond of the resulting biradical leads to fragmentation to ketene and imine. The imine is readily hydrolysed to amine, which can then react directly with the ketene to give the secondary amide, (2H) (Fig. 3). Additional evidence for the validity of the proposed mechanism is obtained by photolyzing (1)-Et in benzene solution in a sealed NMR tube; the proton NMR spectrum of the photomixture exhibits peaks at $\delta 2.20$ and $9.80 \mathrm{p} . \mathrm{p} . \mathrm{m}$. , indicating the presence of acetyaldehyde, as required by the mechanism. Furthermore, photolysis in methanol solvent results in no production of (2 H)-type products, but another (minor) photoproduct, which proved to be a saturated-bridge methyl ester [methyl 9,10 -dihydro- 9,10 -ethanoanthracene-11carboxylate, a known compound (Hill \& Newkome, 1969)], formed as a result of nucleophilic trapping of the methanol solvent by the ketene intermediate. NMR and mass spectral data for the photoproducts $(2 \mathrm{H})$ and the saturated-bridge methyl ester show many similarities, additional evidence for the assignment of the $(2 \mathrm{H})$ structures.

The hydrogen abstraction reaction involves a sixmembered transition state (Fig. 3), with some critical parameters: the $\mathrm{C} \cdots \mathrm{H}$ distance (d), the angle which the $\mathrm{C} \cdots \mathrm{H}$ vector makes with the plane of the $\mathrm{C}=\mathrm{C}$ bond

(2M-A)

(2M-B)

Fig. 2. Di- π-methane mechanism.
(ω) and the $\mathrm{C}=\mathrm{C} \cdots \mathrm{H}$ angle (Δ). Since the abstraction is via the p-orbital of the C atom, optimum values are (Trotter, 1983): $d \leq 2.9 \AA$ (sum of van der Waals radii), $\omega=90^{\circ}, \Delta=90^{\circ}$. The abstractable H atoms in (1)-Et and (1)- Pr are reasonably well sited above the $\mathrm{C}=\mathrm{C}$ bonds (Fig. 1), with $\mathrm{C} \cdots \mathrm{H}$ distances of $2.55 \AA$ ($\mathrm{C} 12 \cdots \mathrm{H}$ on C 16) for (1)- Et and $3.14 \AA(\mathrm{C} 12 \cdots \mathrm{H}$ on C15) for (1)-Pr. Although the C \cdots H distance for (1)-Et is favorable for abstraction, no hydrogen abstraction products $(2 \mathrm{H})$ are formed in any of the solid-state photolyses (Table 4); presumably subsequent steps of the reaction are inhibited in the solid-state environment. Production of $(2 \mathrm{H})$-type products in solution photolyses presumably results from conformers with short $\mathrm{C} \cdots \mathrm{H}$ distances, the subsequent reaction steps then being feasible in solution.

Photolysis of (1)-Bz produces some di- π-methane semibullvalene photoproduct $[(2 M)$-Bz] and trace amounts of the hydrogen abstraction product [2 H)Bz , but the major product of solution photolysis is the ring-fused β-lactam (2L)-Bz (Fig. 1, Table 4). Some (2L)-type product is also formed from (1)-Pr. There are

Fig. 3. Hydrogen abstraction mechanism.
two mechanistic possibilities for the formation of the β-lactam (Fig. 4), both involving, as the first step, the same hydrogen abstraction process as in the production of (2 H)-type photoproducts (Fig. 3). The second step could then be a simple ring closure, or via a ketene intermediate, as in $(2 \mathrm{H})$ production. The latter mechanism (i.e. ketene intermediate) is certainly operative, since small amounts of the $(2 \mathrm{H})$ photoproduct are obtained. More informative is the fact that photolysis in methanol solution results in the formation of the saturated-bridge methyl ester (by trapping of ketene) and no lactam is produced. Hence, the mechanism for the formation of ($2 L$)-type products is most likely that involving the reaction of the ketene intermediate and an imine, a process which has been previously documented (Kirmse, 1959). The decreasing amounts of (2L)-type photoproduct in the series $R=\mathrm{Bz}, \operatorname{Pr}^{i}$, Et depend on the relative stabilities of the imines involved (Fig. 4). The aromatic imine that results from the irradiation of the dibenzyl compound, (1)-Bz, is most stable to hydrolysis and undergoes cycloaddition to give ($2 L$)- Bz at a faster rate than hydrolysis and amine attack on the ketene [to give $(2 \mathrm{H})$ - Bz]. The rate of hydrolysis of the diethylderived imine is probably too large for any significant production of the β-lactam [$(2 L)$-Et]. The diisopropyl

(2L) -Bz

Fig. 4. Mechanism for β-lactam formation.
compound (2)- Pr produces only small amounts of lactam (2L)-Pr, suggesting that the rate of ketene attack by the imine is less than the rate of hydrolysis of the imine. The formation of 15% of $(2 L)$ - Bz in the solidstate photolysis of (1)-Bz suggests that the (1)-Bz molecule exists in the crystal with a conformation which permits hydrogen abstraction ($\mathrm{C} \cdots \mathrm{H} \leq 2.9 \AA$); unfortunately, crystals of (1)-Bz suitable for X-ray analysis could not be obtained.

We thank the Natural Sciences and Engineering Research Council of Canada for financial support.

References

Altomarc, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Aoyama, H., Hasegawa, T., Okazaki, M. \& Omote, Y. (1979). J. Chem. Soc. Perkin Trans. 1, pp. 263-265.

Ciganek, E. (1966). J. Am. Chem. Soc. 88, 2882-2883.

Hill, R. K. \& Newkome, G. R. (1969). J. Org. Chem. 34, 740-741.
Jones, R., Rettig, S. J., Scheffer, J. R., Trotter, J. \& Yang, J. (1996). Acta Cryst. B52, 151-158.

Kirmse, W. (1959). Angew. Chem. 71, 537-541.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC 3200, Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Stucture Corporation (1995). TEXSAN. Single Crystal Analysis Software. Version 1.7. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Pokkuluri, P. R., Scheffer, J. R. \& Trotter, J. (1993a). Acta Cryst. B49, 107-116.
Pokkuluri, P. R., Scheffer, J. R. \& Trotter, J. (1993b). Acta Cryst. B49, 754-760.
Rattray, A. G. M. (1992). Ph.D. Thesis. University of British Columbia, Vancouver, Canada.
Trotter, J. (1983). Acta Cryst. B39, 373-381.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.
Zimmerman, H. E. (1991). Organic Photochemistry, edited by A. Padwa, Vol. 1, Ch. 1. New York: Marcel Dekker.

[^0]: \dagger Synthesis of materials and photochemical details, lists of structure factors, anisotropic displacement parameters. H-atom coordinates and complete geometry, and packing diagrams have been deposited with the IUCr (Reference: FG0004). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: *Sce deposition footnote on p. 1007.

